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Abstract

The objective of this study is to analyze the corigos, through their results, of two dis-
tinct approaches applied to aligning two repredema of anatomy. Both approaches use a
combination of lexical and structural techniquesaddition, the first approach takes advan-
tage of domain knowledge, while the second appradeezts alignment as a special case of
schema matching. The same versions of FMA and GAlEXe aligned by each approach.
2199 concept matches were obtained by both appesaétor matches identified by one ap-
proach only (337 and 336 respectively), we analyedreasons that caused the other ap-
proach to fail. The first approach could be impiby addressing partial lexical matches and
identifying matches based solely on structural lsirty. The second approach may be im-
proved by taking into account synonyms in FMA agenitifying semantic mismatches. How-
ever, only 33% of the possible one-to-one matchesng anatomical concepts were identified
by the two approaches together. New directions edzk explored in order to handle more
complex matches.

Keywords ontology; anatomy; Foundational Model of Anato(®MA); GALEN; ontology
alignment.

1. Introduction

Anatomy is central to the biomedical domain. Whilacroscopic anatomy is required for
the representation of diseases and procedureseliubr anatomy has become increasingly
important for molecular biology. Not only is a sourepresentation of anatomy fundamental
to biomedicine, but the various representationanaftomy currently available also need to be
aligned in order to ensure interoperability. Theed inspired two groups of researchers to




take up the challenge of aligning two sizeable espntations of anatomy: the Foundational
Model of Anatomy (FMA) and the GALEN common refecermodel.

The first effort in aligning these two systems aced at the U.S. National Library of Medi-
cine (NLM). In parallel, but unrelated to it, anethalignment was performed at Microsoft
Research. Both approaches use a combination @lexnd structural techniques. In addition,
the first approach takes advantage of domain krdyele while the second approach is do-
main-independent and thus can be applied to othmadhs.

The contribution of this study is a comparison andlysis of the results of the two align-
ments in an effort to determine the strengths aedkwesses of each approach. This analysis
illustrates how each approach can be improved baselde results of the other.

2. Background

2.1. Approaches to aligning ontologies

Ontology alignment is an active field of researthe objective of aligning ontologies is to
identify correspondence among entities (i.e., cpte@nd relationships) across ontologies
with overlapping content. Some ontology systemsmssly rely on manual curation for their
alignment. In Cyc, for example, several ontologiéwvarying complexity were aligned with
Cyc’s large commonsense knowledge base through afigmaritten term mapping predicates
[1]. Among the many automatic and semi-automatichwes developed for merging and
aligning ontologies, some are specific to this taghile others treat ontology alignment as a
specific example of a more general problem. A boegrview of these methods is presented
next.

Specific approaches. Specifically developed for aligning and mergingtalogies are the
interactive tools PROMPT [2] and Chimaera [3], whimake suggestions to users based on
the similarity between terms, relationships, insenand slot constraints identified across
ontologies. The ONION system semi-automaticallyegates articulation rules to represent
the semantic implication between terms across ogies based on a graph-oriented model
extended with some algebraic operators [4]. Théobotup FCA-MERGE approach offers a
structural description of the global merging preceader a mathematical framework includ-
ing the computation of the pruned concept lattije [

What distinguishes the first alignment in this stdcbm other specific approaches is the
use of domain knowledge. Implicit knowledge embetoleconcept names and combination
of relations is made explicit to facilitate thegaiment. Semantic constraints are used to ensure
that the concepts aligned belong to the same domain

Generic approaches. The problem of aligning two ontologies can bensag an example of
the problem of schema matching, which has beenbgdof database research for many
years. Approaches to schema matching are surveydf]iwhich categorizes approaches
based on the type of information used to compugentiatch result. Such information may
include linguistic information about the names @&neents, constraint information such as
keys ands-A relationships, and structural information suchtesget of component elements
of a given element.

Most schema matching algorithms work by computirgjnailarity matrix, whose rows and
columns denote elements of the two schemas to beheth The value of each cell of the ma-
trix is a real number in the range [0, 1] which oles the degree of similarity of the row and
column elements. Usually, two or more matching mégplies are combined to produce the
similarity matrix. For example, the Cupid algoritfi#} uses a first phase that computes a lin-



guistic match and then a second phase to incomstaictural information. The COMA sys-
tem offers a platform where matching techniquestmarflexibly combined in different ways
[8].

After the matrix is computed, a mapping betweentthe schemas is constructed, e.g., for
each row, one can select the column with largesilaiity value provided that the corre-
sponding cell exceeds a given threshold. Technifpresomputing the mapping are discussed
in [9]. The second alignment in this study useesth matching algorithm and, more specifi-
cally, relies on the Cupid algorithm.

Like many approaches, both alignments studied is paper compare concepts based on
lexical information (i.e., concept names) and dtrad information (i.e., relationships to other
concepts). Other algorithms also exploit instamdermation (e.g., [6,10]). In our study, the
instances of anatomical classes correspond tordens, tissues and cells of individual per-
sons (e.g., this author’s liver). Ontologies of tanay do not typically record information
about instances, but only about classes. Forélaisan, approaches based on instance informa-
tion were not considered in this study.

2.2. Approaches to comparing alignments

In the process of aligning ontologies, the aligntitself only represents a first step. Com-
paring several approaches to aligning ontologieseoeral alignments requires that the infor-
mation resulting from the alignment be represemnteiformly. Several formalisms have been
designed for representing alignments, includingdRormat and the corresponding ontology
alignment API [11], an extension to the OWL langeid2], and a framework for defining
formal languages for specifying alignments andrtlssociated semantics [13]. A uniform
formalism not only facilitates the comparison afyjaiments, but also enables various opera-
tions to be performed on the alignments, suchaastormation, derivation of new alignments,
as well as reasoning about the alignments.

In this study, our objective is to compare the @mts and relationships aligned by each ap-
proach, as well as the complexity of the two aligninprocesses. Therefore, the comparison
performed in this study is simple. No particulamfial representation of alignments is used.

3. Materials

3.1. FMA and GALEN

The Foundational Model of AnatorhyFMA) [July 2, 2002 version] is an evolving ontol-
ogy that has been under development at the Uniyes§iWashington since 1994 [14,15]. Its
objective is to conceptualize the physical objestd spaces that constitute the human body.
The underlying data model for FMA is a frame-basedcture implemented with Protégé
58,957 concepts cover the entire range of macrascajicroscopic and subcellular canonical
anatomy. Concept names in FMA are pre-coordinated, in addition to preferred terms (one
per concept), 28,499 synonyms are provided (up peréconcept). For example, there is a
concept nametterine tube which has two synonym&viductandFallopian tube

! http://fma.biostr.washington.edu/
2 http://protege.stanford.edu/



The Generalized Architecture for Languages, En@eidiias and Nomenclatures in medi-
ciné® (GALEN) [v. 4] has been developed as a EuropeaiotJAIM project led by the Uni-
versity of Manchester since 1991 [16,17]. The GAL&Mnmon reference model is a clinical
terminology represented using GRAIL [18], a fornehguage based on description logics.
GALEN contains 23,428 concepts and intends to sgprethe biomedical domain, of which
canonical anatomy is only one part. Concept namé&3ALEN are post-coordinated, and only
one name is provided for each non-anonymous cor{eept, Lobe of thyroid gland There
are 2,960 anonymous concepts (eSplidStructure which < isPairedOrUnpaired leftfRi-
Paired >).

Both FMA and GALEN are modeled hg-A relationship. Additionally, FMA uses two
kinds of partitive relationshipsPART OF and GENERAL PART OFand GALEN 26, including
ISSTRUCTURAICOMPONENTOF andIsDIVISIONOF. The hierarchy of associative relationships is
also more extensive in GALEN than in FMA There &fel relationship types in GALEN
(e.g.,ISSPECIFICALLYNONPARTITIVELYCONTAINEON) and 54 in FMA (e.g.NERVE SUPPLY. In
addition to inter-concept relationships, there&eslots in FMA describing atomic properties
of concepts, whose types are Boolean, Integer, 8irfiring and Instance. Examples of such
slots includeHAs DIMENSION(Boolean) LATERALITY(Symbol) andEFINITION (String).

3.2. The UMLS

An additional resource used in the alignment is téfied Medical Language Syst&€m
(UMLS®)* developed by NLM. The UMLS Metathesauftiis organized by concept or mean-
ing. A concept is defined as a cluster of termgasgnting the same meaning (synonyms).
The 14th edition (2003AA) of the Metathesaurus aorg over 1.75 million unique English
terms drawn from more than sixty families of metigacabularies, and organized in some
875,000 concepts. In the Metathesaurus, each cbixceptegorized by at least one semantic
type from the UMLS Semantic Network. A subset @fsh semantic types is used to define the
domain of anatomy. Also part of the UMLS distritmutiis the SPECIALIST Lexicon, a large
syntactic lexicon of both general and medical Esigli

4, Methods

4.1. Alignment 1

Alignment 1 first compares the concepts between FAhd GALEN in two steps: lexical
alignment and structural alignment [19]. Then, base the matching concepts identified,
Alignment 1 compares the associative relationshgress systems [20].

The lexical alignment identifies shared concepts across systems lexitiatbugh exact
match and after normalization. Concepts exhibisimilarity at the lexical level across sys-
tems are called anchors, as they are going to &é as reference concepts in the structural
alignment and for comparing associative relatignstAdditional anchors are identified
through UMLS synonymy. Two concepts across systanesconsidered anchors if their
names are synonymous in the UMLS Metathesaurusifittey name the same concept) and
if the corresponding concept is in the anatomy donfiee., has a semantic type related to

3 http://www.opengalen.org/
4 http://umisinfo.nlm.nih.gov/



Anatomy. For FMA, both preferred concept names and symsnwere used in the lexical
alignment process. For GALEN, only non-anonymouscept names were used. For exam-
ple, the concept€ardiac valvein FMA andValve in hearin GALEN are identified as anchor
concepts becauggardiac valvehasValve of heartas a synonym in FMA andalve in heart
matches/alve of heartafter normalization.

Thestructural alignment first consists of acquiring the semantic relatierplicitly repre-
sented within systems. Inter-concept relationshigsgenerally represented by semantic rela-
tions <concept, relationship, concept, whererelationshiplinks concept to concept For
the purpose of aligning the two ontologies, we @ered as only oneARTOF relationship the
various subtypes of partitive relationships preserfEMA (e.g.,PARTOF, GENERALPARTOF)
and in GALEN (e.g.ISSTRUCTURAICOMPONENTOF, 1SDIVISIONOF). Only hierarchical relation-
ships were considered at this step, i%®4, INVERSEIS-A, PARFOF, andHASPART. Implicit se-
mantic relations are then extracted from conceptezaand various combinations of hierar-
chical relations. Augmentation and inference agetito main techniques used to acquire im-
plicit knowledge from FMA and GALEN.

Augmentation attempts to represent with relations knowledge ihatherwise embedded
in the concept names. Augmentation based on reffied-OF relationships consists of creat-
ing a relatior<P, PARTOF, W> between concep® (the part) andV (the whole) from a rela-
tion <P, I1s-A, Part of W> where the concefart of Wreifies, i.e., embeds in its name, the
PARTOF relationships tdV. For examplesNeck of femurpPARFOF, Joint> was added from
the relation<Neck of femuris-A, Component of joint>where the concef@omponent of joint
reifies a specializeBARTOF relationship. Examples of augmentation based bardinguistic
phenomena includeProstate gland,s-A, Gland> (from the concept nam@rostate glany
and<Extensor muscle of legARTOF, Leg> (from the concept nantextensor muscle of lgg

Inference generates additional semantic relations by apglimfierence rules to the exist-
ing relations. These inference rules, specifichis alignment, represent limited reasoning
along thePART-OF hierarchy, generating a partitive relation betwaespecialized part and the
whole or between a part and a more generic whaleekample<First tarsometatarsal joint,
PARTOF, Foot> was inferred based on the relatieridrst tarsometatarsal jointis-A, Joint of
foot> and<Joint of foot,PART-OF, Foot>.

With these explicit and implicit semantic relatiptize structural alignment identifies struc-
tural similarity and conflicts among anchors acregstems. Structural similarity, used as
positive structural evidence, is defined by the presence of common hierarchiekdtions
among anchors across systems, &g, PARFOF, G> in one system andc,’, PARFOF, G,'>
in another wheréc,, ¢;'} and{c,, ¢’} are anchors across systems. The anchor conCapts
diac valvein FMA andValve in heartin GALEN, presented earlier, received positiveistr
tural evidence because they share hierarchicas lioksome of the other anchors across sys-
tems. For exampleCardiac valveis related tdHeart (PARTOF), to Tricuspid valve(INVERSE
IS-A) and toMitral valve (INVERSEIS-A).

Conflicts, on the other hand, are usedhagative structural evidence. The first type of
conflict is defined by the existence of oppositeraichical relationships between the same
anchors across systems, esr;, PARFOF, G> in one system andc,’, HASPART, G,> in
another. The second type of conflict is based @ disjointedness of top-level categories
across systems. For exampi&gil in FMA is a kind ofSkin appendagehich is anAnatomi-
cal structure while Nail in GALEN is aSurgical fixation devicevhich is aninert solid struc-
ture. Anatomical structur@ndlinert solid structurebeing disjoint top-level categories, the two
concepts oNail across systems are semantically distinct, althdhgi share the exact same
name.

Based on the anchors (except those receiving megstiiuctural evidencegssociative re-
lationships are compareédcross systems. The most frequent matches indicat@respon-
dence between an associative relationship in ostesyand one relationship (hierarchical or



associative) or combination thereof in the othem &ample, fronHeart -CONTAINED IN—
Middle mediastinumPARFOF— Mediastinumn FMA andHeart BOUNDSSPACE— Mediasti-
numin GALEN, the relationship matcfFMA: CONTAINED IN- PARFOF, GALEN: BOUNDSS-
PACE can be extracted.

4.2. Alignment 2

The second alignment also includes a lexical phasea structural phase, followed by a hi-
erarchical match phase [21]. For each phase, gemsetiema matching algorithms were
adapted to 1) cope with the number of conceptsepteand 2) handle the more expressive
modeling environments (Protégé and GRAIL). SumniagiZrom [21], the second alignment
proceeds as follows.

The lexical phase identifies concepts whose names are similar. Eacitept name from
FMA and GALEN is first mapped to the UMLS Metathess after normalization and re-
duced to a set of UMLS concept identifiers. Eachoept identifier is further annotated with
part-of-speech information identified using the 8PALIST Lexicon. The similarity between
two concepts from FMA and GALEN depends on theorafi shared UMLS concepts to the
total number of UMLS concept mapped to. Part-ofegpeinformation is further used to dis-
tinguish between roots (nouns and verbs) and nesdifadjectives and adverbs) [7].

For exampleValve in hearfrom GALEN is first normalized tbeartvalveand mapped to
two UMLS conceptsCardiac valvefrom FMA is normalized t@ardiac valveand mapped to
three UMLS concepts, two of which being shared lign mappings of/alve in heartBased
on this, the similarity betweevlalve in heartand Cardiac valvewas assigned a score of .8
(where 0 indicates no similarity and 1.0 indicagserfect match).

The structural phase attempts to identify concepts (and relationshtpa} are used simi-
larly in both systems. The first step is to reifyegy relation present in FMA or GALEN,
thereby creating new, artificial concepts. For egkanone such concept is created from the
relation <Cardiac valve PARTOF, Heart>. Similarity scores can then be assigned to matche
among these artificial concepts, correspondinglation matches. The similarity of two rela-
tions in a match is estimated to be the averagéasity of the concepts and relationships in-
volved in the relations. This process makes it ipbsgo identify the similarity of relations,
not only concepts. For example, this is how we tified that both FMA and GALEN assert
that cardiac valves are part of the heart.

Moreover, the similarity between relations canbbek-propagatedo improve the similar-
ity of the corresponding concepts and relationshifsenever two concepts (or relationships)
are mentioned in similar relations, the similarfitgtween those concepts is increased. This
back-propagation detects similarity of use, esplgdietween relationships. For example, the
similarity betweenISBRANCHOF and BRANCH OF increases from .28 to .98 using back-
propagation.

The finalhierarchical phase attempts to identify concepts with similar desaartd. Simi-
larity scores across leaf concepts were establidhedg the previous phases, but few higher-
level correspondences were identified. In thislfptease, the similarity between two concepts
is increased if there are many descendants thathmdh theory, similarity is pushed up the
inheritance hierarchy from the leaves, but [22}esdbhat few matches were found in this man-
ner.



4.3. Comparing Alignment 1 and 2

Alignment 1 identified a set of concept matcheossrsystems with an indication of the
presence of structural evidence and relationshifcimea with their frequency. A concept
match is supported by Alignment 1 if it receivessifive structural evidence; not supported
otherwise.

Alignment 2 identified a set of matches for botm@epts and relationships, each match be-
ing qualified by similarity score. A match is supieal by Alignment 2 if its similarity score is
higher than or equal to a pre-specified threshotit;supported otherwise. The threshold se-
lected in this study is .83, determined heurislycAly examining the validity of a subset of
matches.

We compared the concept matches obtained by Alighth@nd 2 by classifying them into
four categories: 1) matches supported by both alégrts, 2) matches supported by Alignment
1 but not supported or identified by Alignment 2,r8atches supported by Alignment 2 but
not supported or identified by Alignment 1, andmatches ignored by both alignments. We
then used a similar approach to compare the rektip matches obtained by the two align-
ments.

5. Reaults

The matches obtained in Alignment 1 and 2 are fiirssented separately. Then, we analyze
the results of their comparison. These resultsanemarized in Table 1 (concept matches).

Table 1 — Concept matches in Alignment 1 and 2

Alignment 2
Identified Not
Similarity> .83 | Similarity < .83 identified
o o Positive evidence 2,199 42 295
= £ | No evidence 168 3 29
c
é 3 [ Negative evidence 6 0 4
< | Not identified 132 1,074 -

5.1. Matches in Alignment 1

2,410 pairs of matching concepts across systems identified by lexical alignment be-
tween FMA and GALEN. Through UMLS synonyms, 366 iiddal pairs of matching con-
cepts were found across systems, resulting inlyad2al76 concept matches in Alignment 1.

By structural alignment, 2,536 (91.4%) of the 2, iiétches received positive evidence, 40
(1.4%) negative evidence and 200 (7.2%) no evidehice concepPancreas which has the
same name in FMA and in GALEN, exemplifies a matéth positive evidence as this con-
cept is iNHASPART relationship to three anchors across systetiesid of pancreasrail of
pancreasandNeck of pancreasBy contrastPectoral girdle (synonym:Shoulder girdi¢ in
FMA and Shoulder girdlein GALEN, although matching lexically, were iddigd to be a



mismatch from the conflicting relationships thesaaepts have across systems, k€ecto-
ral girdle, HASPART, Shoulder>in FMA and <Shoulder girdle, PARFOF, Shoulder>in
GALEN. Finally, although linked to anchors includi€ardiovascular systerfPARFOF) and
Body Part(1s-A) in GALEN, Carotid bodydoes not have any hierarchical links to these or
other anchors in FMA, and therefore receives nactral evidence.

The alignment of associative relationships resultetB2 relationship matches. Matches
with high frequency includg§~MA: BRANCH OF GALEN:ISBRANCHOF} and{FMA: TRIBUTARY
OF, GALEN:ISBRANCHOF}.

In summary, a total of 2,958 matches (2,776 forcepis and 182 for relationships) were
identified between FMA and GALEN by Alignment 1.

5.2. Matches in Alignment 2

A total of 3,780 matches were identified by Aligmme?, 3,503 of them in the lexical
phase, 64 in the structural phase, and 213 ini#rarchical phase. 2,583 (68.3%) of the 3,780
matches were assigned similarity scores abovehtleshold of .83. As a matter of fact, 2,539
of these matches have the similarity score of .§.({FMA: Pancreas, GALEN: Pancregs}
1,197 (31.7%) of the 3,780 matches have a simjiladbre lower than .83 and were ignored
(e.g.,{FMA: Upper lobe of lung, GALEN: Lobe of left lunighs a similarity of .5).

Among the 3,780 matches, there 8854 concept matches and22 relationship matches
(e.g.,{FMA: PARFOF, GALEN: BEDIVISIONOF} has a similarity of 1.0). The remaining 104
matches associate things other than two conceptgoorelationships. In 102 cases, a concept
in one system matches a relationship in the other.,{FMA: INSERTION GALEN: Insertion
point}). Finally, two FMA Boolean-typed slots match GANEelationships (e.gHAS DIMEN-
SIoNin FMA andHASDIMENSIONIn GALEN).

5.3. Concept matches supported by both alignments

2,776 concept matches were identified by Alignmeaind 3,654 by Alignment 2. Among
them, 2,199 both received positive structural evideand had a similarity score above the
threshold of .83, as shown in the upper left pafable 1. These matches are supported by
both alignments. For example, the maEMA: Cardiac valve, GALEN: Valve in heartpre-
sented earlier, received positive evidence in Atignt 1, and its similarity score is .88 in
Alignment 2.

5.4. Concept matches supported by Alignment 1 only

As shown in the upper right part of Table 1, 42capt matches received similarity scores
lower than the threshold by Alignment 2, and 29%emeot identified by Alignment 2. How-
ever, these 337 matches were supported by posttivetural evidence of Alignment 1.

® 167 are FMA synonyms matching GALEN concept nameAlignment 1. Alignment 2
failed to identify or to select these matches ie taxical phase because it did not use
synonyms in FMA. For examplélrostatein FMA was matched tdrostate glandin
GALEN by Alignment 1 because the former has a synoRrostate glandn FMA. The
positive structural evidence for this match incleidbeir sharings-A link to Gland and
HAS-PARTIink to Lobe of prostat@cross systems.



158 were obtained through UMLS synonyms in AligningénOne such match {&EMA:
First tarsometatarsal joint, GALEN: First tarso ra¢rsal joint}. This match received
positive structural evidence from the shared héhiaal links to other anchors such as
Foot (PARFOF) andJoint of foot (IS-A) across systems. It was not obtained by Alignrent
because the two alignments used slightly diffensatching criteria for mapping to UMLS
concepts.

12 are FMA preferred concept names matching GALENcept names in Alignment 1,

e.g.,{FMA: Immunoglobulin M, GALEN: Immunoglobulin Mvhich shared hierarchical

links to anchors such &smunoglobulin(is-A) andProtein (Is-A) across systems. The rea-
sons why these matches were not obtained by Aligh@evere investigated and found to
be essentially unimportant.

5.5. Concept matches supported by Alignment 2 only

The lower left part of Table 1 shows the conceptcmeas with similarity scores above the

threshold by Alignment 2 but not supported or idfeadt by Alignment 1.

168 received no structural evidence by Alignmene.gj,, FMA: Carotid body, GALEN:
Carotid body} presented earlier. Although its similarity scgel.0 by Alignment 2, this
match was not supported by Alignment 1 becausetmiataral evidence could be found
(in this case, because of a lack of relations bezpgesented in FMA for this concept).

36 received negative structural evidence by Aligntre Both{FMA: Nail, GALEN: Nail}
and{FMA: Pectoral girdle, GALEN: Shoulder girdlelith negative evidence in Align-
ment 1 as presented earlier, received the simjladbre of 1.0 by Alignment 2. These 36
matches were inappropriately supported by AlignnZhecause, unlike Alignment 1, this
approach does not attempt to identify semantic mishes.

132 were only identified by Alignment 2.

78 could have been obtained by Alignment 1 throuhLS synonymy. They were fil-
tered out by Alignment 1 because they caused ti#ferdnt concepts in one system to be
synonymous. In the UMLS Metathesaurus, the tefnsstate Prostate glandand
Prostatic glandare synonymous. In FMArostaterefers to the organ whilBrostatic
glandis subdivision of the organ. Being different coptsein FMA, their matching to the
same UMLS synonym was rejected. Therefore, Alignmkrdid not get the match
{FMA: Prostatic gland, GALEN: Prostate glanghile Alignment 2 did.

18 were rejected by Alignment 1 through the UMLSn&atic Network filter for Anat-
omy, e.g.{FMA: Flatulence, GALEN: Flatus} (similarity = 1.0NeitherFlatulencenor
Flatus is related to Anatomy in UMLS and this match wagcted by Alignment 1 for
this reason.

36 were not identified by Alignment 1 because astene of the concept names did not
match any UMLS synonyms. For example, Alignment issed{FMA: Colic flexure,
GALEN: Colonic flexure)similarity = 1.0) through UMLS becaus€olonic flexurein
GALEN does not match any UMLS synonyms. Some o$e¢hmatches of Alignment 2
were determined to be valid by a domain expert.

5 The anchor is nameebot jointin GALEN.
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5.6. Concept matches ignored by both alignments

The lower right part of Table 1 shows the conceptaimes ignored by both alignments.
These matches are either not identified by onenalent and not supported by the other or
identified but not supported by either alignment.

® 1,074 were only identified by Alignment 2 but theimilarity scores are lower than the
threshold. 72 are FMA concepts matching GALEN amooys concepts, purposely ig-
nored by Alignment 1. 1,002 are FMA concepts matghBALEN non-anonymous con-
cepts. Most of these matches correspond to pantiéthes, not addressed by Alignment 1
(e.g.,{FMA: Ligament of knee joint, GALEN: Ligament okk} with a similarity score of
.35).

® 32 received no structural evidence by AlignmenbfLwhich 3 of them had similarity
scores lower than the threshold and 29 were natifdel by Alignment 2.

® 4 received negative structural evidence by Aligntrieand were not identified by Align-
ment 2.

5.7. Relationship matches

182 relationship matches were identified in Aligmmel. Alignment 2 identified 22
matches, of which 17 were supported by a similasitpre above .83. Seven relationship
matches were identified by both alignments (e{fMA: NERVE supPpPLy GALEN: Is-
SERVEBY}). Seven were supported by Alignment 2 only (€lgMA: LYMPHATIC DRAINAGE
GALEN: ISSERVEBY}). Alignment 1, relying on the concepts alreadgradid, failed to iden-
tify these matches, because these relationshipsrrect among concepts that have not been
aligned. Finally, in three cases, the match idesttiby Alignment 2 corresponded to a match
created manually in Alignment 1 between the sul#ygfeeARFOF relationships (e.g{FMA:
PARTFOF, GALEN: EDIVISIONOF}).

6. Discussion

6.1. Improving the alignments

In fact, the philosophy behind each approach ifediht. Alignment 1 takes advantage of
domain knowledge. It requires lexical matches tosbpported by structural matches, at the
cost of inaccurately rejecting some valid matchdserefore, it favors precision over recall.
On the other hand, Alignment 2 relies on genegoi@Eihms and, by imposing no penalty for
lack of structural matches, favors recall over gieo. Theoretically, the two approaches
could be combined. In practice, however, despigr ttifferences, their results are surpris-
ingly close and any improvement would only be m@zafat best.

Nevertheless, each approach can be improved baseéa oesults of the other. Alignment 1
would benefit from addressing partial lexical aligent and identifying matches based solely
on structural similarity. Alignment 2 could be inoped by taking into account synonyms in
FMA and identifying semantic mismatches.
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Of particular interest are the 875 relation matatietsined by Alignment 2 in the structural
phase for the purpose of increasing the similesigres of the corresponding concepts and
relationships. In addition to increasing the chanoé identifying matches, these relation
matches could be used for themselves. For exant@anatch byfFMA: <Lung, CONTAINED
IN, Thoracic cavity>, GALEN: <LungiSSPECIFICALLYNONPARTITIVELYCONTAINEON, Pleural
membrane>jwhose similarity score is .33, captured the défee the two ontologies have in
representing the knowledge about equivalent coscept

6.2. Validating the alignments

The validation of the results of the alignment haen an issue for both groups. Anatomy is
a vast domain and, in addition to domain knowledbe, experts are also required to have
some knowledge of the two systems under investigatlo group has achieved a comprehen-
sive evaluation of its results. One interest opdsng of two alignments is that there is the
possibility of a cross-validation. In fact, whillket matches of Alignment 1 can certainly vali-
date those of Alignment 2, the contrary is not sea€ly true. In Alignment 1, a lexical match
is required to be supported by some structuralemdd. Conversely, in Alignment 2, lexical
matches get the highest score possible and stal@uidence, if any, is only used to increase
the score of partial lexical matches. However, mascfrom Alignment 2 supported by struc-
tural evidence could be used to validate the reiflAlignment 1. Unfortunately, the similar-
ity score used in Alignment 2 to indicate the oiyadif the match does not strictly reflect the
presence of structural evidence.

6.3. Challenges

Evaluating completeness. Neither alignment identified enough matches. faltof 3,982
concept matches were identified by the two alignmésgether, only accounting for about 7%
of all FMA concepts and 17% of all GALEN concepisguably, these proportions represent
a conservative estimate of completeness for tlgmaént. While the coverage of FMA is re-
stricted to canonical anatomy, GALEN includes catégg from biomedical subdomains other
than anatomy (e.gNon-normal phenomenpBasic drug formClinical processand Food).
These concepts and their descendants do not b&ddaihg anatomical domain and, therefore,
are not expected to have any matches in FMA. Exaesnpf such concepts includ&ipernu-
merary thumb Tetanus vaccine, Cardiac valvotomgnd Diary product 11,384 non-
anatomical concepts were identified in GALEN, aatng for 49% of the 23,428 concepts in
GALEN. In other words, only 12,044 concepts in GALEan be the target of a match for
FMA concepts. This indicates that there is a maxmaf 12,044 one-to-one concept matches
between FMA and GALEN. By this measure, the twaratients together have identified
33% of all possible concept matches, i.e., 3,9820602,044.

Identifying complex matches. By design, all concept matches identified bytile align-
ments are one-to-one matches. However, there are coonplex cases where a single entity
in one ontology may match a group of entities i ¢ither [22]. For example, the information
about arterial and nerve supply and venous andhgtipdrainage is represented by four dis-
tinct relationships in FMAARTERIAL SUPPLYWENOUS DRAINAGENERVE SUPPLaNdLYMPHATIC
DRAINAGH, while GALEN uses a single relationshigSERVEIBY). A simple way to address
this difference in approach is to establish a @aeéiny match that relates the single relation-
ship type in GALEN to the four relationship types FMA. Groups of concepts may also
match across ontologies. For example, as illugrateFigure 1, along thes-A hierarchy of
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FMA, Lobe of lungis first modeled by upper/lower positions (i.epper lobe of lungand
Lower lobe of lungand then by laterality (e.g., falpper lobe of lungUpper lobe of left lung
andUpper lobe of right lung By contrast, in GALENL.obe of Lungs first modeled by later-
ality and then by upper/lower positions. Althougtedo-one matches were identified for fine-
grained concepts such bpper lobe of left lungbecause of these modeling differences, no
single match can be found in the other system &mrcepts such akobe of Left Lungn
GALEN andLower lobe of lungn FMA. One possibility would be for such concefsbe
associated not with one concept in the other ogglbut with several concepts (e.ggbe of
left lungin GALEN with Upper lobe of left lungand Lower lobe of left lungn FMA; and,
Lower lobe of lungn FMA with Lower lobe of left lungand Lower lobe of right lungn
GALEN). Additional alignment techniques need toeyplored to handle such complex cases.

Representing the alignment formally. In this study, no particular formalism was used t
represent the simple, one-to-one matches identdiess ontologies. However, for more
complex matches, the result of the alignment wdnddefit from being represented formally.
One possible solution is to construct a mediatingplogy. This is called a mapping in [22],
which shows how it can help align FMA and GALEN.the case of the supply and drainage
relationships mentioned earlier, for example, trEpping contains all five relationship types
(four from FMA and one from GALEN) and states egjply thatISSERVEBY in GALEN sub-
sumes the four relationship types in FMA. Expregsime mapping as a mediating ontology
allows one to address more subtle situations imetudifferences in granularity. In GALEN,
the Fibrous trigoneis a division of theHeart In FMA, there is an additional level of indirec-
tion: the Fibrous trigoneis part of theFibrous skeletonwhich is part of theHeart Thus,
GALEN contains a single assertion relating the taad fibrous trigone, whereas FMA con-
tains two assertions. One way to align these asserts to place all three assertions in the
mapping, which states that there is a partitivatiehship betweeribrous trigoneandHeart
Moreover, this relationship is composed of two selationships that link the fibrous trigone
to the heart via the fibrous skeleton. The mappiakes it possible to demonstrate that the
two assertions contained in FMA refine the asseritioGALEN. Note that the transitive clo-
sure of the hierarchical relations used in Aligninkalready identified the equivalence of the
relations betweeRibrous trigoneandHeartin the two systems.
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FMA GALEN

Lobe of lung Lobe of lung
|}
Upper | | Middlef| | Lower Lobe of Lobe of
lobe of| | lobe o | | lobe of left right
lung lung | lung lung lung

N T al

)’ f
Upper || Upper Lower | Lower Upper ||| Lower Lower || Middle || Upper
lobe of ||| lobe of| | lobe of | lobe of lobe off| lobe of| | lobe of| lobe of|| lobe of
right left left right left left right right right
lung lung lung | lung lung ‘ lung lung ‘ lung lung

Figure 1 — Example of complex concept matches batviFdMA and GALEN

7. Conclusion

We have compared two approaches to aligning tweesemtations of anatomy. Common to
the two approaches is the use of a combinatiomatdl and structural techniques. However,
the approaches differ in that one takes advantégerain knowledge (and is therefore spe-
cific to the domain under investigation), while thier draws on a generic schema matching
approach (and is therefore applicable to an aritd@main). Having aligned the same ver-
sions of FMA and GALEN allowed us to cross-validate results. The alignments obtained
by the two approaches were surprisingly close elwgh approach identified a limited number
of valid matches that the other approach faileilemtify. A detailed analysis of the differ-
ences in the results helped reveal the strengtiswesaknesses of each approach and sug-
gested possible improvements to them. Complex reajclvhere one entity in one ontology
corresponds to several entities in the other, enyond the reach of these approaches. Fur-
ther research is needed to identify these completximes.
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